Application of the SPARROW model in watersheds with limited information: a Bayesian assessment of the model uncertainty and the value of additional monitoring
نویسندگان
چکیده
How can spatially explicit nonlinear regression modelling be used for obtaining nonpoint source loading estimates in watersheds with limited information? What is the value of additional monitoring and where should future data-collection efforts focus on? In this study, we address two frequently asked questions in watershed modelling by implementing Bayesian inference techniques to parameterize SPAtially Referenced Regressions On Watershed attributes (SPARROW), a model that empirically estimates the relation between in-stream measurements of nutrient fluxes and the sources/sinks of nutrients within the watershed. Our case study is the Hamilton Harbour watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. The proposed Bayesian approach explicitly accounts for the uncertainty associated with the existing knowledge from the system and the different types of spatial correlation typically underlying the parameter estimation of watershed models. Informative prior parameter distributions were formulated to overcome the problem of inadequate data quantity and quality, whereas the potential bias introduced from the pertinent assumptions is subsequently examined by quantifying the relative change of the posterior parameter patterns. Our modelling exercise offers the first estimates of export coefficients and delivery rates from the different subcatchments and thus generates testable hypotheses regarding the nutrient export ‘hot spots’ in the studied watershed. Despite substantial uncertainties characterizing our calibration dataset, ranging from 17% to nearly 400%, we arrived at an uncertainty level for the whole-basin nutrient export estimates of only 36%. Finally, we conduct modelling experiments that evaluate the potential improvement of themodel parameter estimates and the decrease of the predictive uncertainty if the uncertainty associated with the current nutrient loading estimates is reduced. Copyright © 2012 John Wiley & Sons, Ltd.
منابع مشابه
Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملbelief function and the transferable belief model
Beliefs are the result of uncertainty. Sometimes uncertainty is because of a random process and sometimes the result of lack of information. In the past, the only solution in situations of uncertainty has been the probability theory. But the past few decades, various theories of other variables and systems are put forward for the systems with no adequate and accurate information. One of these a...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کامل